Slowness: An Objective for Spike-Timing–Dependent Plasticity?
نویسندگان
چکیده
Our nervous system can efficiently recognize objects in spite of changes in contextual variables such as perspective or lighting conditions. Several lines of research have proposed that this ability for invariant recognition is learned by exploiting the fact that object identities typically vary more slowly in time than contextual variables or noise. Here, we study the question of how this "temporal stability" or "slowness" approach can be implemented within the limits of biologically realistic spike-based learning rules. We first show that slow feature analysis, an algorithm that is based on slowness, can be implemented in linear continuous model neurons by means of a modified Hebbian learning rule. This approach provides a link to the trace rule, which is another implementation of slowness learning. Then, we show analytically that for linear Poisson neurons, slowness learning can be implemented by spike-timing-dependent plasticity (STDP) with a specific learning window. By studying the learning dynamics of STDP, we show that for functional interpretations of STDP, it is not the learning window alone that is relevant but rather the convolution of the learning window with the postsynaptic potential. We then derive STDP learning windows that implement slow feature analysis and the "trace rule." The resulting learning windows are compatible with physiological data both in shape and timescale. Moreover, our analysis shows that the learning window can be split into two functionally different components that are sensitive to reversible and irreversible aspects of the input statistics, respectively. The theory indicates that irreversible input statistics are not in favor of stable weight distributions but may generate oscillatory weight dynamics. Our analysis offers a novel interpretation for the functional role of STDP in physiological neurons.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSlowness Learning: Mathematical Approaches and Synaptic Mechanisms
In this thesis, we investigate slowness as an unsupervised learning principle of sensory processing. Two aspects are given particular emphasis: (a) the mathematical analysis of Slow Feature Analysis (SFA) as one particular implementation of slowness learning and (b) the question, how slowness learning can be implemented in a biologically plausible fashion. In the first part of the thesis, we de...
متن کاملThe Spike-Timing Dependence of Plasticity
In spike-timing-dependent plasticity (STDP), the order and precise temporal interval between presynaptic and postsynaptic spikes determine the sign and magnitude of long-term potentiation (LTP) or depression (LTD). STDP is widely utilized in models of circuit-level plasticity, development, and learning. However, spike timing is just one of several factors (including firing rate, synaptic cooper...
متن کاملA Model of Spike - Timing Dependent Plasticity : One or Two
[PDF] [Full Text] [Abstract] , May 1, 2007; 19 (5): 1362-1399. Neural Comput. P. A. Appleby and T. Elliott Multispike Interactions in a Stochastic Model of Spike-Timing-Dependent Plasticity [PDF] [Full Text] [Abstract] , September 5, 2007; 27 (36): 9711-9720. J. Neurosci. J.-t. Lu, C.-y. Li, J.-P. Zhao, M.-m. Poo and X.-h. Zhang Interneurons Depends on Target Cell Type Spike-Timing-Dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Computational Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2007